NASA

University of Oxford researchers are mapping unlit areas around the world in an attempt to measure global poverty.

Hovering above the earth are orbiting cameras, clicking pictures of the planet’s surface. Each image contain layers and layers of information. Economists have recently started mining these images for clues that can help create a quicker, more extensive, up-to-date database of global poverty that can supplement door-to-door surveys.

In a new paper, researchers Samuel Wills, Brock Smith, and Thomas McGregor at Oxford University in London present a fresh twist to this technology-driven approach: they illuminate rural poverty by isolating areas where people live in darkness at night.

It makes sense: light is a basic human need, and people tend to use it more as they become richer. The amount of light emitted from a certain region can be an indicator of the level of economic growth and infrastructure investment there. Plus, light generated through electricity is easy, fast, and relatively cheap to detect via satellite imagery.

But in the realm of poverty, everything is not illuminated; Areas of nighttime darkness hold a lot of hidden information. “Looking for poverty in light is like looking for lost keys under a street lamp,” Wills tells CityLab. “It’s better to focus on darkness.”

In order to do that, Wills and his colleagues combined two high-resolution datasets: one that documented the light emitted from the planet between 1992 and 2013, and the other the global population distribution between the years 2000 and 2013. They found that, by and large, people who resided in unlit areas around the world were extremely poor.

Of course, nighttime darkness is not a perfect economic measure by any means. The researchers write:  

People living in darkness is an admittedly crude proxy for poverty. It only captures rural poverty and tells us nothing about urban poverty rates. It only considers one component of a household’s consumption bundle, light, and ignores the many other unmet needs that characterise poverty. It will also pick up different levels of poverty around the world, as the provision of light depends on how effectively central governments provide electricity grids.

Even so, in countries with large swathes of un-urbanized land, it turns out nighttime darkness can identify rural poverty levels to a high degree of accuracy. In the Democratic Republic of Congo, Tanzania, Colombia, the Dominican Republic, and Tajikistan, for example, this method correctly detected more than 80 percent of households above or below the poverty line, compared to 600,000 household surveys. The overall accuracy rate for the countries analyzed was as high as 83 percent.

McGregor, who co-authored the paper, created the maps below, which show the lit (in yellow) and unlit areas (in red) in some of these countries. The deeper the red, the higher the number of people per square kilometer (0.4 square mile) living in darkness, and by extension, likely in extreme poverty.

Bolivia (84 percent accuracy)

Rural poverty map of Bolivia, based on 2010 data. (Courtesy of Wills, McGregor, and Smith)

Democratic Republic of Congo (90 percent accuracy)

Rural poverty map of Democratic Republic of Congo, based on 2010 data. (Courtesy of Wills, McGregor, and Smith)

Rwanda (77 percent accuracy)

Rural poverty map of Rwanda, based on 2010 data. (Courtesy of Wills, McGregor, and Smith)

Tajikistan (86 percent accuracy)

Rural poverty map of Tajikistan, based on 2010 data. (Courtesy of Wills, McGregor, and Smith)

Sierra Leone (84 percent accuracy)

Rural poverty map of Sierra Leone, based on 2010 data. (Courtesy of Wills, McGregor, and Smith)

Tanzania (74 percent accuracy)

Rural poverty map of Tanzania, based on 2010 data. (Courtesy of Wills, McGregor, and Smith)

These maps offer a new way for development agencies and relief groups to target their anti-poverty efforts. They also help gauge the rural-urban divide in consumption of resources such as oil. Via the paper:

We find that high oil prices and new discoveries stimulate economic activity (proxied by lights) in countries with oil relative to those without. However, this new activity is restricted to towns and cities. Both types of oil boom have no effect on the rural poor. There is no evidence that oil booms cause unlit rural areas to become illuminated, or people to leave unlit areas for towns and cities.

About the Author

Most Popular

  1. a map comparing the sizes of several cities
    Maps

    The Commuting Principle That Shaped Urban History

    From ancient Rome to modern Atlanta, the shape of cities has been defined by the technologies that allow commuters to get to work in about 30 minutes.

  2. a photo of a full parking lot with a double rainbow over it
    Transportation

    Parking Reform Will Save the City

    Cities that require builders to provide off-street parking trigger more traffic, sprawl, and housing unaffordability. But we can break the vicious cycle.   

  3. a photo of a woman on a SkyTrain car its way to the airport in Vancouver, British Columbia.
    Transportation

    In the City That Ride-Hailing Forgot, Change Is Coming

    Fears of congestion and a powerful taxi lobby have long kept ride-hailing apps out of transit-friendly Vancouver, British Columbia. That’s about to change.  

  4. a photo of a man at a bus stop in Miami
    Transportation

    Very Bad Bus Signs and How to Make Them Better

    Clear wayfinding displays can help bus riders feel more confident, and give a whole city’s public transportation system an air of greater authority.

  5. An aerial photo of downtown Miami.
    Life

    The Fastest-Growing U.S. Cities Aren’t What You Think

    Looking at the population and job growth of large cities proper, rather than their metro areas, uncovers some surprises.

×