A proto-GPS used punch cards to direct drivers.

We are entering the age of the computerized car. Our vehicles, increasingly, speak to us. They listen to us when we speak to them. They alert us of danger, and protect us - or try to - when their warnings have failed. Sometimes, they even do the driving for us, insisting that computer and car can be one and the same. Last week, Ford opened its new Silicon Valley research lab - a facility that will focus on, among other things, "big data" and "user experience" as they relate to the automobile.

This all seems very new and very now, and it's tempting to assume that the car as a technology - with apologies, obviously, to the Delorean - is set for its biggest disruption since the first Model Ts rolled off Ford's belts. It's worth remembering, though, that all this newness isn't fully new: the tech-driven updates that seem completely novel to us today have in fact been around for years. Just in relatively simplified form. 

Take General Motors. Half a century ago, in 1966, the company developed a product it called its Driver Aid Information and Routing system. The system was essentially a fusion of proto-GPS and roadside communications - the precursor to all the ease-of-driving automation we're so excited about today. Except, of course, the system didn't use computers. It used punch cards. The driver would insert a punch-coded card into the DAIR device, and the holes in the card would translate to mechanical movements in the car itself, directing the driver. Much like present-day navigational systems, the DAIR was designed to perch on the hump of the car, between the driver and the driver-side passenger seat - where today's cupholders would be - with a message center for the driver resting on the car's dashboard. (The picture above, though a bit blurry, gives a pretty good idea of what the thing looked like in action.)

GM had no less a celebrity than Walter Cronkite test out the technology. "As I drove the test car, DAIR navigated for me," he said, "telling me when to go straight, turn left, turn right, and so on. Speed limits and other traffic signs flashed onto the panel activated by low-power transmitters along the way." His narration makes clear that, like the GPS systems of today, the DAIR device was meant to be an aid to, rather than a replacement of, the driver. As a 1967 paper describing the DAIR system explained, "It is designed to assist the driver with his peripheral functions so that he can concentrate his attention on driving."

The DAIR was also designed to deliver alerts about external hazards and information like upcoming road signs and changing speed limits. And it had an external communications element, as well: Should you find yourself with a flat tire or in an accident, you could use the machine's included radio-telephone to get help sent to you - much like the services Ford Sync, BMW Assist, and GM's own OnStar offer today.

GM's system of 1966 was only one among a group that was competing to realize the dream of a self-navigating car. In Europe, a joint project run by Siemens, Volkswagon, and Blaupunkt - along with the German government - developed a system that relied on roadside beacons for auto navigation. Japan would come up with its own, similar system, the Comprehensive Automobile Traffic Control System. Both of these systems took for granted, as it seems many visions for self-driving did, a road built out to communicate with the cars that traveled on it. (Even the DAIR system had an element of road-to-car communication: The test track Cronkite drove on to create his auto-navigational experience relied on a system of magnets in the road that would, in turn, produce signals for the system.) 

But innovation is rarely innovative for long. DAIR would be replaced in the late 1960s by a new device, the Experimental Route Guidance System, which would similarly rely on a network of roadside control units to do its guiding. Navigation, it was assumed, would be a delicate dance between the driver and the road. It wasn't until later -- but not much later -- that we'd figure out what we know today: that, given the right push, a car really can drive itself.

Photo credit: SOMATUSCAN / Shutterstock.com

This post originally appeared on The Atlantic.

About the Author

Most Popular

  1. A man and a woman shop at a modern kiosk by a beach in a vintage photo.
    Design

    Why Everyday Architecture Deserves Respect

    The places where we enact our daily lives are not grand design statements, yet they have an underrated charm and even nobility.

  2. a photo of Los Angeles in 1962
    Transportation

    Mapping the Effects of the Great 1960s ‘Freeway Revolts’

    Urbanites who battled the construction of the Interstate Highway System in the 1960s saved some neighborhoods—but many highways did transform cities.

  3. A chef prepares food at a restaurant in Beijing, China.
    Life

    What Restaurant Reviews Reveal About Cities

    Where official census data is sparse, MIT researchers find that restaurant review websites can offer similar demographic and economic information.

  4. a photo of a small fleet of electric Chevrolet Bolts cars.
    Transportation

    Should Electric Vehicle Drivers Pay Per Mile?

    Since EV drivers zip past gas taxes, they don’t contribute to the federal fund for road maintenance. A new working paper tries to determine whether plug-ins should pay up.

  5. A photo of anti-gentrification graffiti in Washington, D.C.
    Equity

    The Hidden Winners in Neighborhood Gentrification

    A new study claims the effects of neighborhood change on original lower-income residents are largely positive, despite fears of spiking rents and displacement.

×