NASA

Curiousity will offer critical insights into how the climate of Mars has changed over billions of years, lashed by solar winds.

Scientists have made great strides in predicting what will happen to Earth's climate, but there is a fundamental problem: We only have one climate to test our hypotheses in. We can't irreversibly hack Earth's climate (by pumping it full of toxic gases, for example) to test whether our assumptions are right or wrong—that, obviously, would be disastrous for Earth's inhabitants. That means climate models are loaded with historical and empirical data to make them function.

If only we could take the model to another planet to really test the underpinning physics.

Bingo. Curiosity, the car-sized mobile chemistry lab that dropped spectacularly onto the surface of Mars yesterday, will give scientists a rare chance to test their assumptions about how climate change works on Earth. It will hunt the surface of Mars for sediment to pick up and drop into its sophisticated onboard machinery, then send back critical insights into how the climate of Mars—once warmer, with rain, rivers, and deltas—has changed over billions of years, lashed by solar winds.

"You learn about how to understand an atmosphere by seeing different atmospheres," says Mark Lemmon, a planetary scientist from Texas A&M University who is part of Curiosity's climate team. "And the more we know about Mars' atmosphere, the better we can really understand our own."

Curiosity allows scientists to "break the model," he says. "We find out much, much more about our place in the universe than we could know just by contemplating ourselves."

All with the latest bells and whistles: "We can remotely look at a rock with a laser beam, vaporize it, and see what elements are in it," Lemmon says in a telephone interview from Pasadena, the morning after the historic landing.

This has happened before, Lemmon explains. When scientists first ran Earth's climate models against the climate of Venus, winds on Venus ground to a theoretical halt within days. Something in Earth's modeling wasn't accounting for how wind worked on that distant planet. By tinkering with new physics, scientists finally accommodated for Venus' winds, thus reducing the margin of error in Earth's climate models.

"Realistically, we cannot sit here on Earth and deliberately mess our climate in order to test the models," Lemmon said. "And that's what I think the real power of the climate part of the Mars program is all about."

Specifically, Curiosity will study how carbon flows through the Martian world, something that will help scientists compare the two planets. Paul Niles is also working with the NASA team. He is a planetary geologist and analytical geochemist at NASA's Johnson Space Center who watched the touch-down with his family in Los Angeles.

"One of the things that Curiosity is going to help us learn much more about is... How does carbon cycle through the system? Where does it go? Where does it end up? Does it ever come back again? Is it ever buried deep enough that it come back again from volcanoes?"

Even though Mars' atmosphere is completely different from Earth's, the answers to these questions could shed light on how carbon cycles are now contributing to climate change on Earth. After initial rounds of analysis, "we might be in a better position to make direct comparisons with what happens on Earth," Niles said.

Both Niles and Lemmon said that, with the dramatic landing complete, the real work has only just begun.

Lemmon texted one word to his wife from Pasadena when Curiosity kissed Mars's surface for the first time: "Joy."

"We know there's stuff out there and we need to see what it is!" he said.

"I think space exploration is a critical piece of pushing the boundaries," Niles said. "The best part about it is it makes us address problems that we maybe wouldn't have addressed, and solve problems we may have not solved otherwise."

The Climate Desk is a journalistic collaboration between The Atlantic, Mother Jones, Slate, and others, dedicated to exploring the impact—human, environmental, economic, political—of a changing climate. Learn more at theclimatedesk.org.

About the Author

Most Popular

  1. Four houses of wood and glass sit on the water.
    Environment

    Are These Dutch Floating Homes a Solution for Rising Seas?

    Houseboats have long been a common sight near Amsterdam, but a new community may signal a premise that could work elsewhere, too.

  2. A woman sits reading on a rooftop garden, with the dense city of Tokyo surrounding her.
    Solutions

    Designing a Megacity for Mental Health

    A new report assesses how Tokyo’s infrastructure affects residents’ emotional well-being, offering lessons for other cities.

  3. Environment

    Visualize the Path of the Eclipse With Live Traffic Data

    On Google Maps, a mass migration in progress.

  4. A city overpass with parked cars and sparse trees
    Civic Life

    How 'Temporary Urbanism' Can Transform Struggling Industrial Towns

    Matchmaking empty spaces with local businesses and the tiny house movement are innovative solutions that can help post-industrial cities across Europe and North America adapt to the future.

  5. POV

    Grenfell Was No Ordinary Accident

    The catastrophic fire that killed at least 80 in London was the inevitable byproduct of an ideology that vilified the poor.