Cell

Scientists have finally visualized the endoplasmic reticulum, and it looks a place where we'd forget where we left our cars.

Scientists have known about the endoplasmic reticulum for nearly seven decades: It's a protein-synthesizing object squished inside our cells next to nucleoli and mitochondria and all the other fun organelles.

But what they didn't realize up until now is that the ER has a shape very similar to one of the world's most mundane structures: the spiral-ramped parking garage. That's right – if you were a member of that "history-making" team that piloted a submarine into a human body in 1966, you conceivably could've spent hours wandering around the reticulum, trying to remember where you parked the dang thing.

The startling discovery of the ER's "helicoid" was made by Mark Terasaki of the University of Connecticut Health Center and researchers from Columbia, Harvard, Tel Aviv University and elsewhere; the journal Cell published the news in a July 18 paper titled, "Stacked Endoplasmic Reticulum Sheets Are Connected by Helicoidal Membrane Motifs." What's behind the corkscrew in our cells? Well, the ER is dotted with molecules called ribosomes that are in the business of making proteins. One of the most efficient shapes for sheltering tons of ribosomes happens to be the spiral, because it maximizes surface area in a small amount of space. And thus it "resembles a parking garage," according to the study's abstract, "in which the different levels are connected by helicoidal ramps."

Here's the revolutionary new image of it:

To pound on the parking-lot similarity some more, if a cell wants to increase its protein production, it adds layers to the reticulum, kind of like how a developer would bulk up a garage. Science Codex goes into the explanation for that:

When a cell needs to secrete more proteins, it can reduce the distances between sheets to pack even more membrane into the same space. Think of it as a parking garage that can add more levels as it gets full. "The theory explains that this structure is seen in nature because it maximizes the cell's ability to make a large number of proteins while minimizing the energetic cost to the cell," Rapoport says.

Excellent work, guys. Now please get cracking on the next problem: Is it true that the Golgi apparatus really looks like a waste-transfer station?

Top image courtesy the journal Cell

About the Author

Most Popular

  1. A woman looks straight at camera with others people and trees in background.
    Equity

    Why Pittsburgh Is the Worst City for Black Women, in 6 Charts

    Pittsburgh is the worst place for black women to live in for just about every indicator of livability, says the city’s Gender Equity Commission.

  2. A rendering of Oakland, California, that replaces Interstate 980 with a surface boulevard
    Transportation

    Here Are the Urban Highways That Deserve to Die

    The Congress for New Urbanism once again ranks the most-loathed urban freeways in North America—and makes the case for tearing them down.

  3. a map comparing the sizes of several cities
    Maps

    The Commuting Principle That Shaped Urban History

    From ancient Rome to modern Atlanta, the shape of cities has been defined by the technologies that allow commuters to get to work in about 30 minutes.

  4. a photo of a full parking lot with a double rainbow over it
    Transportation

    Parking Reform Will Save the City

    Cities that require builders to provide off-street parking trigger more traffic, sprawl, and housing unaffordability. But we can break the vicious cycle.   

  5. A photo of a police officer in El Paso, Texas.
    Equity

    What New Research Says About Race and Police Shootings

    Two new studies have revived the long-running debate over how police respond to white criminal suspects versus African Americans.

×