Ford

If engineers can build bots that can land themselves on Mars, surely they can produce less sophisticated systems for our vehicles.

NASA engineers referred to the most crucial moments in the Mars Curiosity mission last summer as the "seven minutes of terror." During that time, without the guidance or control of any humans back on earth, the rover had to enter the martian atmosphere, descend from an initial speed of 13,000 miles per hour, and land on target in one insanely expensive, intact piece.

"And the computer," as the engineer in this dramatic little NASA trailer explains, "has to do it all by itself":

Perhaps this sounds like a leap too far in transportation technology, but if engineers can build a car-sized robot capable of managing its own internal errors in a first foray to the martian landscape, surely some less sophisticated but equally reliable systems could be built into our more terrestrial vehicles?

"Imagine the complexity in software and from the hardware perspective that’s necessary in order to launch that successfully in seven minutes," says Aziz Makkiya, a design telematics engineer at Ford. "That’s one of the experiences that we're trying to mimic in a smaller scale in the automotive world."

Cars are about to get substantially more complex, more reliant on computers. Soon enough, they'll automatically be talking to each other, to the infrastructure around them, to distant emergency responders. And this isn't just in the faraway world of driverless cars. Cars that still have people behind the wheel will have "connected vehicle" technology in them that simply makes them safer, by for instance registering the presence of nearby speeding cars.

All of this technological promise, though, comes with greater risk. Parts breaks. Networks fail. Sometimes our phone calls get dropped or the power goes out. The real question about connected cars is actually the same one NASA asks about all those robots in space the agency invests millions of dollars in: How do we make sure this stuff never fails?

"It’s capable of handling internal errors," Aziz says of the types of robotics that are used in space. "That’s what we’re trying to accomplish."

Ford has just announced a three-year research project with the St. Petersburg Polytechnic University in Russia to study how robots communicate in space with the goal of figuring out how cars might best communicate on earth. In space, robots communicate with each other, and with astronauts in the International Space Station, and with humans monitoring all of them back on earth. Connected vehicle technology faces a similar challenge in needing to direct information with varying priorities, through multiple channels – all with backup systems to the backup system to the backup. A Ford engineer describes the project here:

Ford is aiming to develop one platform with multiple communications technologies on it – dedicated short-range communication, cellular wireless broadband, mesh networks -- that would include a kind of smart switch capable of automatically toggling between the networks depending on the situation.

Say, for example, that your Prius is in imminent danger of ramming into another car ahead of you. "This is a high-priority message," Aziz says. "You would like to transmit that as fast as possible, and in that case DSRC or a mesh network is the right medium." But maybe your car needs to communicate with a toll authority, or a rental company. "Then we would like to fall back to different technologies if it saves the bandwidth and if it saves the cost."

The trick is to figure out, automatically, which networks are best in which situations, while traveling at 50 miles an hour, and without ever losing connectivity. "Think of it as a soft hand-off between one technology and another," Aziz says.

Part of the goal, obviously, is to pull all of this off at a cost that would make the technology feasible in millions of automobiles. NASA probably isn't the best model on how to scale up affordable mass-market technology. But this also wouldn't be the first technology to start, in theory, in space before trickling down to the rest of us.

Top image courtesy of Ford.

About the Author

Most Popular

  1. A young girl winces from the sting as she receives the polio vaccine in 1954.
    Life

    How Mandatory Vaccination Fueled the Anti-Vaxxer Movement

    To better understand the controversy over New York’s measles outbreak, you have to go back to the late 19th century.

  2. Design

    A New Plan to Correct a Historic Mistake in Pittsburgh

    A Bjarke Ingels Group-led plan from 2015 has given way to a more “practical” design for the Lower Hill District. Concerns over true affordable housing remain.

  3. A photo of a closed street in St. Louis
    Equity

    The Curious Tale of the St. Louis Street Barriers

    Thanks to an '80s mania for traffic calming, the St. Louis grid is broken by hundreds of bollards and cul-de-sacs. Critics say it’s time to get rid of them.

  4. A crowded room of residents attend a local public forum in Chapel Hill, North Carolina.
    Life

    Are Local Politics As Polarized As National? Depends on the Issue.

    Republican or Democrat, even if we battle over national concerns, research finds that in local politics, it seems we can all just get along—most of the time.

  5. Life

    How to Inspire Girls to Become Carpenters and Electricians

    Male-dominated trades like construction, plumbing, and welding can offer job security and decent pay. A camp aims to show girls these careers are for them, too.