Shutterstock

Stanford scientists say they've figured out how, and now the challenge will be to make it cheap enough to do on a large scale.

Once upon a time, it was a triumph of technology when a gas-powered machine replaced an animal. The tractor rendered the ox-drawn plow obsolete. The automobile outperformed the horse-and-buggy.  

But sometimes, Mother Nature knows best. Consider exoelectrogenic microbes, an unusual variety of bacteria that emit electrons as they consume organic material. Stanford researchers have developed a way to harvest electricity from these odd organisms as they feast on sewage.

"You clean the wastewater and you can also recover energy," explains Xing Xie, an interdisciplinary fellow at Stanford and one of the co-authors of a new paper published this week in the Proceedings of the National Academy of Sciences

Thousands of these tiny "microbial batteries" cling to carbon filaments and transfer their output to a silver oxide electrode as they work through the organic material in wastewater. All told, the device can extract nearly a third of the potential energy in wastewater. 

This could be a win/win for the U.S. Only 4 percent of North American wastewater is put to beneficial reuse right now, but the United Nations has forecast we'll need to rapidly increase that number in the coming decades. Wastewater is treated to feed crops, create snow for ski mountains, and even, occasionally, for drinking.

The tubular growth depicted here is a type of microbe that can produce electricity. Its wire-like tendrils are attached to a carbon filament. This image is taken with a scanning electron microscope. More than 100 of these "exoelectrogenic microbes" could fit side by side in a human hair. (Xing Xie, Stanford Engineering)

Exoelectrogenic microbes have previously attracted the attention of scientists who sought to harness their remarkable abilities. In a paper last year in Science, Bruce Logan and Korneel Rabaey wrote that exoelectrogenic microbes could be used to generate "biofuels, hydrogen gas, methane" and various industrial chemicals. 

But until now, few efforts to apply these micro-organisms to wastewater treatment had been successful, because of the difficulty in efficiently harvesting electricity. In this case, Xie and his co-authors, professors Yi Cui and Craig Criddle, solved that problem with silver oxide to attract the electrons.

The battery developed by Stanford scientists to harness the electricity produced by waste-digesting microbes. (Xing Xie, Stanford Engineering)

Unfortunately, silver oxide brings its own issues to the table. "The concept is scalable," says Xie, "but the problem is the cost of the material." If "microbial batteries" are to be widely deployed in urban water systems or polluted lakes, in other words, the next step is to figure out how to bring the cost down. 

Top image: jirapong/Shutterstock.com

About the Author

Most Popular

  1. Life

    In Montreal, French Expats Find Language Doesn't Translate to Community

    More Parisians are moving to Quebec seeking lower rents, jobs, and an easy cultural fit. But as housing prices rise, so does resentment among the city’s locals.

  2. POV

    One of the Greatest Threats to Our Lifespans Is Loneliness

    What would society be like if health insurers and public bodies invested as much in encouraging social encounters as exercise and good diet?

  3. Equity

    Amazon Should Just Build HQ2 In My Apartment

    Since no city submitted the perfect bid for the company’s second world headquarters, I put together my own.

  4. Equity

    The Side Pittsburgh Doesn't Want You to See

    Pittsburgh filmmaker Chris Ivey has spent over twelve years documenting the lives of the people displaced so that the city can achieve its “cool” status.  

  5. Construction workers build affordable housing units.
    Equity

    Why Is 'Affordable' Housing So Expensive to Build?

    As costs keep rising, it’s becoming harder and harder for governments to subsidize projects like they’ve done in the past.