Jacobs School/UCSD

Scientists have trained algorithms to determine your "urban tribe" from your online photos.

Admit it, you've done this: You've stereotyped the mustachioed guy in thick-rimmed glasses as a "hipster," the girl in excessive black eyeliner as a "goth," the beefy guy in leather as a "biker." These terms are all admittedly obnoxious. But the fact that we often wear our social identity in our accessories speaks to the reality that cities are made up of myriad subcultures. Sociologists call them "urban tribes."

Obviously, it doesn't take a lot of nuance to identify these groups with your own eyes. Identifying them by computer, though, is a much trickier task. Computer Scientists at the University of California at San Diego, Columbia University and the University of Zaragoza in Spain have actually been developing algorithms to do this – to automatically mine group photos for markers of collective identities.

Why, you ask, would we want a computer to do that? As the researchers argue in a paper [PDF] explaining their process, algorithms capable of ID'ing group identities from photography might inform smarter image search engines, targeted advertising, or more accurate recommendations on social networks.

Maybe you don't actually want Facebook inferring from your party photos that you might like this ad for organic quinoa, or this local listing for an Ender's Game book club. But it's weirdly fascinating to know that this might be possible.

The researchers built the project around the eight most common subculture categories listed on Wikipedia: biker, hipster, country, goth, heavy-metal, hip-hop, raver, and surfer (which brings up the point that, yeah, a lot of us don't fit into a clear subculture at all). They also searched for photos on various search engines with social tags like "club," "formal" and "pub."

Each of the photos used in the project was automatically disassembled into its individual human parts, including the face, head, neck, torso and arms of each body in the image. The researchers then systematically trained the algorithms to detect evidence from those details – a tattoo here, a certain kind of hat there – to piece together a social identity for the whole picture.

"From Bikers to Surfers: Visual Recognition of Urban Tribes," by I. Kwak et al.

At this point, their technique is accurate 48 percent of the time, which probably isn't high enough to interest advertisers quite yet. But, hey, it's a fair amount better than random chance (that would be closer to 9 percent).

Top image courtesy of the Jacobs School of Engineering/UC San Diego.

About the Author

Most Popular

  1. The White House is seen reflected during a rainy day in Washington, D.C.
    POV

    The City That 'This Town' Forgot

    Washington, D.C., is home to a huge concentration of reporters. Why do they miss the stories happening in their own city?

  2. Design

    These Sneakers Are Your Free Transit Pass

    A new BVG-Adidas collaboration means unlimited travel along Berlin’s public transit network for the rest of 2018. That is if you can find a pair.

  3. Environment

    Britain's Next Megaproject: A Coast-to-Coast Forest

    The plan is for 50 million new trees to repopulate one of the least wooded parts of the country—and offer a natural escape from several cities in the north.

  4. Equity

    There's Basically No Way Not to Be a Gentrifier

    It doesn't matter where you live. You're displacing someone, and making income segregation worse.

  5. Equity

    Why Washington, D.C. Is Leading the Way on Partnering With the Private Sector

    President Donald Trump has soured on public-private partnerships to achieve his infrastructure plan. But in his own backyard, the city is doubling down on collaborations that defy the typical stereotypes.