A cyclist maneuvers his way through downtown Los Angeles traffic on Tuesday, Sept. 16, 2014.
Urban mobility increasingly involves a mix of private and public transit. Who gets the data? Richard Vogel/AP

Policymakers need it; private transportation companies have it. Here’s one way to broker a solution.

How, exactly, should policymakers respond to the rapid rise of new private mobility services such as ride-hailing, dockless shared bicycles, and microtransit? As I argued here several months ago, in order to answer that question city leaders will need accurate and detailed information about all urban trips—however the traveler chose to get from one place to another. And that information needs to come in part from the private mobility companies that are moving a growing share of people within our cities.  

In 2017, these services had a tumultuous year. Apocalyptic images of discarded dockless bikes in China left American officials that are experimenting with this model for bikesharing scrambling to ensure their cities avoid the same fate. Meanwhile, Uber’s admission that it paid a $100,000 ransom to hackers who stole 57 million user accounts damaged that company’s credibility as a protector of passenger privacy. And a widely shared study from researchers at University of California-Davis refuted several optimistic hypotheses about ride-hailing’s societal benefits: It found that companies like Uber and Lyft are spurring urban congestion, siphoning public transit riders, and failing to entice many people to give up their cars. Not coincidentally, transit agencies like Washington, D.C.’s WMATA are now launching their own investigations to see if declining ridership can be traced to the emergence of ride-hailing.

Beyond these broad issues, there are a number of specific questions that can’t be answered without access to trip information from Uber, Lyft, Limebike, and the like. For example, without such data it’s hard for policymakers—or the general public—to decide if it’s a good idea to convert a parking meter to a ride-hailing drop-off point, or to ensure pedestrians aren’t obstructed by heaps of dockless bikeshare bikes on the sidewalk. Unfortunately, new mobility services have generally refused to let the public sector see inside their data vaults.

But the tide is turning, especially as the line between public and private forms of urban transportation blurs. American transit agencies are partnering with ride-hailing companies to offer late-night service, move people to bus or rail stations (“first mile/last mile” solutions), and manage paratransit for riders with limited mobility. Ride-hailing companies are in an awkward position if they refuse to share data with governments that subsidize them. “If I’m paying you to move a passenger, the data for that passenger isn’t yours,” I heard a Texas transit official say recently to a ride-hailing executive. “It’s mine.” The executive had no response.

When will policymakers finally be able to access the data they need to manage streets and sidewalks in the public interest, and how will they get it? The most likely solution is via a data exchange that anonymizes rider data and gives public experts (and perhaps academic and private ones too) the ability to answer policy questions.

This idea is starting to catch on. The World Bank’s OpenTraffic project, founded in 2016, initially developed ways to aggregate traffic information derived from commercial fleets. A handful of private companies like Grab and Easy Taxi pledged their support when OpenTraffic launched. This fall, the project become part of SharedStreets, a collaboration between the National Association of City Transportation Officials (NACTO), the World Resources Institute, and the OECD's International Transport Forum to pilot new ways of collecting and sharing a variety of public and private transport data. Kevin Webb, the founder of SharedStreets, envisions a future where both cities and private companies can utilize SharedStreets to solve questions on topics like street safety, curb use, and congestion.

That’s a laudable goal, but Shared Streets will have to solve several challenges in order to become a go-to resource. For example, it’s hard to provide a complete picture of urban mobility unless the heavyweights like Uber, Lyft, Didi Chuxing, Ofo, and Mobike participate; so far none of them has signed on. There is also the question of how tech behemoths like Google and Apple—collectors of massive datasets about individuals’ movement—can be involved. Perhaps they can be sources of reliable revenue that SharedStreets will need in order to scale (at present the initiative is being incubated with philanthropic support).

Finally, there is the critical question of privacy. Although Uber’s hacking scandal has dinged ride-hailing’s credibility as a protector of passenger data, new mobility services do have a point when they push back against handing over rider information to the government. It’s reasonable to assume that at least some customers will balk at the prospect of public agencies accessing their personal ride histories.

Webb says that SharedStreets will handle those concerns by collecting aggregated data that is rich enough to allow for deep analysis while still hiding information about individual rides. New mobility service companies could further protect their passengers by converting trip data into so-called “synthetic populations” of artificial data modeled after trips that people actually took.   

However the new mobility service data arrives—almost certainly aggregated, and potentially artificially modeled—there will need to be a way to ensure it is accurate. After all, companies like Uber and Lyft have a vested interest in the questions policymakers pose about their impact on city streets. Data validation—especially for modeled data—is crucial for such an exchange to be trusted.

There are many questions yet to resolve, but the movement to give city officials reliable and accessible trip data is gaining momentum. Indeed, it’s hard to see how the elusive ideal of a “smart city” is attainable without shared set of facts about how people are moving within an urban area. In addition to SharedStreets, a number of universities, startups, and major tech companies are quietly developing strategies to plug this gap in our civic knowledge. Most of those efforts aren’t public yet, but I expect several to launch in 2018. For those of us who believe in data-driven management of streets and sidewalks, that’s something to be excited about—and to push for.

About the Author

Most Popular

  1. A photo-illustration of several big-box retail stores.
    Equity

    After the Retail Apocalypse, Prepare for the Property Tax Meltdown

    Big-box retailers nationwide are slashing their property taxes through a legal loophole known as "dark store theory." For the towns that rely on that revenue, this could be a disaster.

  2. A photo of a small small house in San Francisco's Noe Valley that sold for $1.8 million in 2014.
    Equity

    Why Cities Must Tackle Single-Family Zoning

    As cities wake up to their housing crises, the problems with single-family-home residential zoning will become too egregious to ignore.

  3. Children play in a spray park in Rockville Town Square in suburban Rockville, Maryland.
    Life

    America Really Is a Nation of Suburbs

    New data shows that the majority of Americans describe their neighborhoods as suburban. Yet we still lack an official government definition of suburban areas.

  4. A man holding a toddler walks past open-house signs in front of condominiums for sale.
    Life

    Millennials Are More Likely to Buy Their First Homes in Cities

    New research finds that Millennials are 21 percent more likely to buy their first homes near city centers than Generation X.

  5. A photo shows the Amazon logo on a building.
    Amazon HQ2

    Amazon’s HQ2 Spectacle Isn’t Just Shameful—It Should Be Illegal

    Each year, local governments spend nearly $100 billion to move headquarters and factories between states. It’s a wasteful exercise that requires a national solution.